下列计算正确的是( )
A.a+a=a2 B.a·a2=a3 C.(a2) 3=a5 D.a2 (a+1)=a3+1
下面四个数中比-2小的数是( )
A.1 B.0 C.-1 D.-3
(本题满分9分)
如图,以为顶点的抛物线与轴交于点.已知、两点坐标分别为(3,0)、(0,4).
(1)求抛物线的解析式;
(2)设是抛物线上的一点(、为正整数),且它位于对称轴的右侧.若以、、、为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;
(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点,是否总成立?请说明理由.
(本题满分9分)
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,,,;图②中,,,.图③是刘卫同学所做的一个实验:他将的直角边与的斜边重合在一起,并将沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).
(1)在沿方向移动的过程中,刘卫同学发现:、两点间的距离逐渐 ▲ .
(填“不变”、“变大”或“变小”)
(2)刘卫同学经过进一步地研究,编制了如下问题:
问题①:当移动至什么位置,即的长为多少时,、的连线与平行?
问题②:当移动至什么位置,即的长为多少时,以线段、、的长度为三边长的三角形是直角三角形?
问题③:在的移动过程中,是否存在某个位置,使得?如果存在,
求出的长度;如果不存在,请说明理由.
请你分别完成上述三个问题的解答过程.
(本题满分9分)
如图,在等腰梯形中,.是边的中点,以为圆心,长为半径作圆,交边于点.过作,垂足为.已知与边相切,切点为
(1)求证:;
(2)求证:;
(3)若,求的值.
(本题满分8分)
如图,四边形是面积为4的正方形,函数()的图象经过点.
(1)求的值;
(2)将正方形分别沿直线、翻折,得到正方形、.设线段、分别与函数()的图象交于点、,求线段EF所在直线的解析式.