(本题满分12分,第(1)、(2)题各6分)
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.
(1)求直线AD和抛物线的解析式;
(2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.
(本题满分12分,第(1)题7分,第(2)题5分)
如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若,求证:四边形OCBD是菱形.
(本题满分10分,第(1)小题4分,第(2)小题6分)
如图,正方形ABCD中, M是边BC上一点,且BM=.
(1)若试 用 表 示 ;
(2)若AB=4,求sin∠AMD的值.
(本题满分10分,第(1)题6分,第(2)、(3)题各2分)
作为国际化的大都市,上海有许多优秀的旅游景点.某旅行社对4月份本社接待的2000
名外地游客来沪旅游的首选景点作了一次调查,调查结果如下图表.
(1)填上频数和频率分布表中空缺的数据,并补全统计图;
(2)由于五一黄金周、6月高三学生放假,该社接待外来旅游的人数每月比上月按,60%的速度增长,预计该旅行社6月将接待外地来沪的游客的人数是 ▲ .
(3) 该旅行社预计10月黄金周接待外地来沪的游客将达5200人,请你估计首选景点是外滩的人数约是 ▲ .
先化简再求值:,其中.