(7分)如图,正方形网格中,每一个小正方形的边长都是1,四边形ABCD的四
个顶点都在格点上,O为AD边的中点,若把四边形ABCD绕着点O顺时针旋转180°.
试解决下列问题:
(1)画出四边形ABCD旋转后的图形;
(2)设点C旋转后的对应点为C′,则tan∠AC′B= ▲ ;
(3) 求点C旋转过程中所经过的路径长.
(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.
(1)在实验中他们共做了50次试验,试验结果如下:
① 填空:此次实验中,“1点朝上”的频率是 ▲ ;
② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?
(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小
亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.
(6分)某村计划建造如图所示的正方形蔬菜温室,在温室内,要求沿下侧内墙保
留3 m宽的空地,其它三侧内墙各保留1 m宽的通道.当正方形蔬菜温室边长为多少时,蔬
菜种植区域的面积是224m2?
. (7分)已知:如图,□ABCD中,∠BCD的平分线交AB于E,交DA的延长线于F.
(1) 求证:DF=DC;
(2) 当DE⊥FC时,求证:AE=BE.
(6分) 如图,某同学在大楼AD的观光电梯中的E点测得大楼BC楼底C点的俯角
为45°,此时该同学距地面高度AE为20米,电梯再上升5米到达D点,此时测得大楼BC
楼顶B点的仰角为37º,求大楼的高度BC.(参考数据:sin37 º≈0.60, cos37 º≈0.80, tan37
º≈0.75)
(6分)某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标
准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32
名学生两次考试考分等级制成统计图(如图),试回答下列问题:
(1)这32名学生经过培训,考分等级“不合格”的百分比由 ▲ 下降到 ▲ ;
(2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名.