(本题满分7分)如图,在⊙O中,AB是直径,AD是弦,∠ADE = 60°,∠C = 30°.
(1)判断直线CD是否是⊙O的切线,并说明理由;
(2)若CD = ,求BC的长.
(本题满分7分)如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有
一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
(本题满分7分)如图,已知一次函数的图象与x轴、y轴分别交于A、B两点,且与反比例函数的图象在第一象限交于C点,CD垂直与x轴,垂足为D.若OA=OB=OD=1,
(1)求点A,B,D的坐标;
(2)求一次函数和反比例函数的解析式。
(本题满分7分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工
程队单独施工比乙工程队单独施工多用30天完成此项工程.求甲、乙两工程队单独完成此项
工程各需要多少天?
(本题满分6分)已知在平面直角坐标系中的位置如图10所示.
(1)分别写出图中点的坐标;
(2)画出绕点按顺时针方向旋转;
(3)求点旋转到点所经过的路线长(结果保留).
(本题满分6分)袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.
(1)从袋中摸出一个小球,求小球上数字小于3的概率;
(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,
求数字之和为偶数的概率.(要求用列表法或画树状图求解)