阅读下列材料:
1×2 = ×(1×2×3-0×1×2),
2×3 = ×(2×3×4-1×2×3),
3×4 = ×(3×4×5-2×3×4),
由以上三个等式相加,可得
1×2+2×3+3×4 = ×3×4×5 = 20。
读完以上材料,请你计算下列各题:
(1)1×2+2×3+3×4+···+10×11(写出过程);
(2)1×2+2×3+3×4+···+n×(n+1) = _________;
(3)1×2×3+2×3×4+3×4×5+···+7×8×9 = _________。
已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G。∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。
(1)求证:△EGB是等腰三角形;
(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_____度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆。经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李。
(1)请你帮助学校设计所有可行的租车方案;
(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形。
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。
(1)求出b,c的值,并写出此二次函数的解析式;
(2)根据图象,写出函数值y为正数时,自变量x的取值范围。
分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一小
区域内标上数字(如图所示)。欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转
盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的
数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘。
(1)试用列表或画树状图的方法,求欢欢获胜的概率;
(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由。