(8分)问题情景:某学校数学学习小组在讨论“随机掷二枚均匀的硬币,得到一正一反的概率是多少”时,小聪说:随机掷二枚均匀的硬币,可以有“二正、一正一反、二反”三种情况,所以,P(一正一反)=;小颖反驳道:这里的“一正一反”实际上含有“一正一反,一反一正”二种情况,所以P(一正一反)=.
⑴ 的说法是正确的.
⑵为验证二人的猜想是否正确,小聪与小颖各做了100次实验,得到如下数据:
计算:小聪与小颖二人得到的“一正一反”的频率分别是多少?从他们的实验中,你能得
到“一正一反”的概率是多少吗?
⑶对概率的研究而言小聪与小颖两位同学的实验说明了什么?
(8分)如图,将直角三角形纸片ABC沿边BC所在直线向右平移,使B点移至斜
边BC的中点E处,连接AD、AE、CD。
(1)求证:四边形AECD是菱形。
(2)若直角三角形纸片ABC的斜边BC的长为100cm,且AC=60cm.求ED的长 和四边形AECD的面积;
(7分) 如图,是2010年广州亚运会、亚残运会志愿者(含落选的)人数的条形
统计图和扇形统计图。
(1)图2中“亚运会志愿者”所对应的扇形圆心角度数为 ;
(2)请在图1中将“城市志愿者”部分的图形补充完整;
(7分) 已知a=3,b=—2,化简并求的值
(6分)解方程:
如图6,一次函数的图象与轴,轴交于A,B两点,与反比例函数
的图象相交于C,D两点,分别过C,D两点作轴,轴的垂线,垂足为E,F,连
接CF,DE,EF.
有下列四个结论:
①△CEF与△DEF的面积相等; ②△AOB∽△FOE;
③△DCE≌△CDF; ④.
其中正确的结论是 .(选填序号)