的相反数是【 】
A.2 B.-2 C. D.
(11分)如图,抛物线经过的三个点,已知轴,点在轴上,点在轴上,且.
(1)求抛物线的对称轴;
(2)写出三点的坐标并求抛物线的解析式;
(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形?若存在,请在图中画出所有符合条件的P点,然后直接写出点的坐标;若不存在,请说明理由.
(10分)已知:如图,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.
(1)当P点在BC边上运动时,求证:△BOP∽△DOE;
(2)设(1)中的相似比为,若AD︰BC = 2︰3. 请探究:当k为下列三种情况时,四边形ABPE是什么四边形?
①当= 1时,是 ;
②当= 2时,是 ;
③当= 3时,是 .
请证明= 2时的结论.
(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度成直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34 mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
(9分)某超市推出两种优惠方法:①购1个水杯,赠送1包茶叶;②购水杯和茶叶一律按9折优惠.水杯每个定价20元,茶叶每包定价5元.小明需买4个水杯,茶叶若干包(不少于4包).
(1)分别写出两种优惠方法购买费用y(元)与所买茶叶包数x(包)之间的函数关系式;
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小明需买这种水杯4个和茶叶12包,请你设计怎样购买最经济.
(9分)如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为6米,点E、D、B、C 在同一水平地面上.
(1)改善后滑滑板会加长多少?(精确到0.01)
(2)若滑滑板的正前方留有4米长的空地就能保证安全,已知原滑滑板的前方8米处的E
点有一棵大树,这样的改造是否可行?说明理由.(参考数据:≈1.414,≈1.732,
≈2.449.)