据报道,北京市今年开工及建设启动的8条轨道交通线路,总投资约82 000 000 000元.
将82 000 000 000 用科学计数法表示为
A. B. C. D.
-2的相反数是
A. B. C. -2 D. 2
.在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.
(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1. 设,则k = ;
(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
.已知平面直角坐标系xOy中, 抛物线与直线的一个公共点为.
(1)求此抛物线和直线的解析式;
(2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值;
(3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN恰好是梯形,求点N的坐标及梯形AOMN的面积.
已知关于的方程.
(1)求证:方程总有两个实数根;
(2)若方程有一个根大于4且小于8,求m的取值范围;
(3)设抛物线与轴交于点M,若抛物线与x轴的一个交点关于直线的对称点恰好是点M,求的值.
如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为.
(1)若D、E、F分别是AB、BC、AC边上的中点,则=_______;
(2)若D、E、F分别是AB、BC、AC边上任意点,则的取值范围是 .
小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将以AC边为轴翻折一次得,再将以为轴翻折一次得,如图2所示. 则由轴对称的性质可知,,根据两点之间线段最短,可得. 老师听了后说:“你的想法很好,但的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.