(10分)某校原有600张旧课桌急需维修,现有A、B、C三个工程队. A、B队的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A队要多用10天.学校决定由三个工程队一齐施工,要求最多6天完成维修任务.三个工程队都按原来的工作效率施工2天,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能完成整个维修任务.
(1)求工程队A原来平均每天维修课桌的张数;
(2)求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.
(10分)如图,Rt△ABC中,<ACB=90°,AC=4 ,AB=5 ,点P是AC上的动点(P不与A、C重合),设PC=x,点P到AB的距离PQ为y.
(1)求y与x的函数表达式,并写出自变量x的取值范围;
(2)试讨论以P为圆心、半径长为x的圆与AB所在直线的位置关系,并指出相应的x取值范围.
(9分)如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=,对角线AC、BD相交于点0,将直线AC绕点0顺时针旋转,分别交BC、AD于点E、F.
(1)求证:当旋转角为90°时,四边形ABEF为平形四边形;
(2)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点0顺时针旋转的度数.
(9分)某种子培育基地用A、B、C、D、四种型号的小麦种子共2000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%。根据实验数据绘制了图1和图2两幅尚不完整的统计图.(说明:图1表示四种型号种子占总粒数的比例,图2表示四种型号种子的发芽数)
(1)D型号种子粒数是多少?并将图2的统计图补充完整;
(2)通过计算说明,应选哪一个型号的种子推广;
(3)若将所有的已发芽的种子放在一起,从中随机取出一粒,求取到B型号发芽种子的概率.
(9分)如图,在平面直角坐标系中,△ABC与△A1B1C1关于点E成中心对称
(1)画出对称中心E,并写出E、A、C的坐标;
(2)P(a,b)是△ABC的边上AC上一点,△ABC经平移后,点P的对应点是P2(A+6,B+2),请画出上述平移后的△A2B2C2,并判断△A2B2C2与△A1B1C1的位置关系(直接写出结果).
(9分)已知,如图,EG∥AF.请你从①DE = DF ;②AB = AC ③BE = CF中,选择两个作为已知条件,剩余一个作为结论,写出一个真命题(只需写出一种情况,)并加以证明.
已知:EC∥AF, , ,
求证: .
证明