满分5 > 初中数学试题 >

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b...

 

如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,

操作示例:

 我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC绕点P逆时针旋转180°拼接到△PFD的位置,构成新的图形(如图2).

思考发现:

判断图2中四边形ABEF的形状:          ;四边形ABEF的面积是           。(用含字母的代数式表示)

实践探究:

类比图2的剪拼方法,请你就图3(已知:AB∥DC)画出剪拼成一个平行四边形的示意图.

说明: 6ec8aac122bd4f6e

联想拓展:

小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.

如图4,在梯形ABCD中,AD∥BC,E是CD的中点, EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积。

说明: 6ec8aac122bd4f6e

如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

说明: 6ec8aac122bd4f6e

 

略 【解析】思考发现:四边形ABEF为矩形-------1分;四边形ABEF的面积是---2分 实践探究: 联想拓展: (1)如图4过点E作PE∥AB交BC与P交AD的延长线于Q,    则有S梯形ABCD=S□ ABPQ= AB ×EF =5×4=20         -------5分 (2) 作图-------7分 取AB的中点F,BC的中点G,作直线FG分别交AE,CD于点P,Q, 则可拼成一平行四边形PQDE                ------8分
复制答案
考点分析:
相关试题推荐

如图,DB∥AC,且DB=说明: 6ec8aac122bd4f6eAC,E是AC的中点,

说明: 6ec8aac122bd4f6e

  (1)求证:BC=DE;

  (2)连结AD、BE,若要使四边形DBEA是矩形,则给△ABC添加一个什么条件,为什么?

  (3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C=         0

 

查看答案

如图,在平行四边形ABCD中,∠ABC、∠BCD的平分线相交于点O,BO延长线交CD延长线于点E,

说明: 6ec8aac122bd4f6e

求证:OB=OE

 

查看答案

 

已知一元二次方程a说明: 6ec8aac122bd4f6e2+b说明: 6ec8aac122bd4f6e+c=0(a≠0)的两根分别为说明: 6ec8aac122bd4f6e1、说明: 6ec8aac122bd4f6e2,则有说明: 6ec8aac122bd4f6e1+说明: 6ec8aac122bd4f6e2=说明: 6ec8aac122bd4f6e说明: 6ec8aac122bd4f6e1说明: 6ec8aac122bd4f6e2=说明: 6ec8aac122bd4f6e

请应用以上结论解答下列问题:

已知方程x2-4x -1=0有两个实数根x1,x2, 要求不解方程,

求值:(1)(x1+1)(x2+1)       (2)说明: 6ec8aac122bd4f6e

 

查看答案

.已知关于x的一元二次方程x2-6x+k=0有两个实数根.

(1)求k的取值范围;

(2)如果k取符合条件的最大整数,且一元二次方程x2-6x+k=0与x2+mx-1=0有一个相同的根,求常数m的值.

 

查看答案

(1)说明: 6ec8aac122bd4f6e      

(2)说明: 6ec8aac122bd4f6e

(3)  说明: 6ec8aac122bd4f6e

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.