如图,在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,连接AC,CF. 求证:
(1)AF=CF;
(2)CA平分∠DCF.
如图,在平面直角坐标系xOy中,一条直线l与x轴相交于点A,与y轴相交于点,与正比例函数 y=mx(m≠0)的图象相交于点.
(1)求直线l的解析式;
(2)求△AOP的面积.
解不等式组 并判断是否为该不等式组的解.
计算: .
如图1,小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形,正方形的面积为 ;再把正方形的各边延长一倍得到正方形(如图2),如此进行下去,正方形的面积为 .(用含有n的式子表示,n为正整数)
定义[]为函数的特征数,下面给出特征数为[,,] 的函数的一些结论:①当时,函数图象的顶点坐标是;②当时,函数在时,随的增大而减小;③无论m取何值,函数图象都经过同一个点. 其中所有的正确结论有 .(填写正确结论的序号)