一元二次方程的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.只有一个相等的实数根 D.没有实数根
抛物线y=-(x-3)2+2的对称轴是( )
A.直线x=-3 B.直线x=3 C.直线x=-2 D.直线x=2
下列二次根式中属于最简二次根式的是( )
A. B. C. D.
如图,在平面直角坐标系中,四边形为矩形,,,为直线上一动点,将直线绕点逆时针方向旋转交直线于点;
(1)当点在线段上运动(不与重合)时,求证:OA·BQ=AP·BP;
(2)在(1)成立的条件下,设点的横坐标为,线段的长度为,求出关于的函数解析式,并判断是否存在最小值,若存在,请求出最小值;若不存在,请说明理由。
(3)直线上是否存在点,使为等腰三角形,若存在,请求出点的坐标;若不存在,请说明理由。
某电脑公司经销甲种型号电脑,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?
有一个数学活动,其具体操作过程是:
第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开
第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN
请解答以下问题:
(1)如图2,若延长MN交线段BC于P,△BMP是什么三角形?请证明你的结论.
(2)在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合(1)中结论的三角形纸片BMP ?