某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.
1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?
2.如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
3.根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.
1.求新传送带AC的长度;(结果保留根号)
2.如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.
如图.在⊙O中.弦BC垂直于半径OA.垂足为E.D是优弧弧BC上一点.连接BD、AD、OC,∠ADB=30°。
1.求∠AOC的度教;
2.若弦BC=6cm.求图中阴影部分的面积。
2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请根据以上提供的信息,解答下列问题:
1.求被抽取部分学生的人数;
2.请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;
3.请估计八年级800名学生中达到良好和优秀的总人数.
一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验,实验数据如下表:
解答下列问题:
1.如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是 。
2.如果摸出的这两个小球上数字之和为9的概率是,那么的值可以取7吗?请用列表法或画树状图说明理由;如果的值不可以取7,请写出一个符合要求的值。
解方程:
1.;
2.