如图是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.
图1 图2 图3 图4
如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数,,,,求图4中所有圆圈中各数的绝对值之和.
如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且,所以6是完全数.大约2200多年前,欧几里德提出:如果是质数,那么是一个完全数,请你根据这个结论写出6之后的下一个完全数是 .
有一面积为1平方米的正方形纸,第一次剪掉一半,第二次剪掉剩下的一半,如此下去,第5次后剩下的纸面积是多少平方米?
已知ab>0,试求的值。
(1)请你计算下列式子(可用计算器),完成后面的问题。
计算:6×7= ;66×67= ;666×667= ;
6666×6667= ;………………
根据上述各式的规律,你认为4444422222= 。
(2)利用计算器探索规律:任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15873,你发现了什么规律?你能试着解释一下理由吗?
观察下列各式,完成下列问题。
已知1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……
(1)仿照上例,计算:1+3+5+7+……+99= 。
(2)根据上述规律,请你用自然数n(n≥1)表示一般规律: