满分5 > 初中数学试题 >

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+...

(2011广西崇左,25,14分)(本小题满分14分)已知抛物线y=x2+4x+mm为常数)

经过点(0,4).

(1)       求m的值;

(2)       将该抛物线先向右、再向下平移得到另一条抛物线.已知平移后的抛物线满足下述两个条件:它的对称轴(设为直线l2)与平移前的抛物线的对称轴(设为直线l1)关于y轴对称;它所对应的函数的最小值为-8.

①  试求平移后的抛物线的解析式;

②  试问在平移后的抛物线上是否存在点P,使得以3为半径的圆P既与x轴相切,又与直线l2相交?若存在,请求出点P的坐标,并求出直线l2被圆P所截得的弦AB的长度;若不存在,请说明理由.

 

(1)代入(0,4)得m =4; (2)①平移前对称轴l1为x= - 2,平移后对称轴l2为x= 2,最小值为-8,故抛物线方程为y=(x-2)2-8. ②设P的坐标为(x0,y0),则y0=-3,x0=2±或y0=3,x0=2± 又P到x=2的距离小于3,故x0=2±舍去, 综上,存在这样的点P,且点P的坐标为(-3,2±). 【解析】略
复制答案
考点分析:
相关试题推荐

(2011广西崇左,24,14分)(本小题满分14分)如图,在边长为8的正方形ABCD

中,点OAD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作圆O的切线交边BC于点N.

(1)       求证:△ODM∽△MCN

(2)       设DM=x,求OA的长(用含x的代数式表示);

(3)       在点O运动的过程中,设△CMN的周长为p,试用含x的代数式表示p,你能发现怎样的结论?

说明: 6ec8aac122bd4f6e

 

查看答案

(2011广西崇左,23,12分)(本小题满分12分)2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.

说明: 6ec8aac122bd4f6e说明: 6ec8aac122bd4f6e

(1)求∠DAC的度数;

(2)求这棵大树折断前高是多少米?(注:结果精确到个位)(参考数据:6ec8aac122bd4f6e

 

查看答案

(2011广西崇左,22,10分)(本小题满分10分)矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:

(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.

说明: 6ec8aac122bd4f6e

(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的_______相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________ .

(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.

 

查看答案

(2011广西崇左,21,10分)(本小题满分10分)目前我市“校园手机”现象越来越受到社会的关注.针对这种现象,市辖区某中学班主任李老师在“统计实习”活动中随机调查了学校若干名家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:说明: 6ec8aac122bd4f6e

(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;

(2)求图②中表示家长“无所谓”的圆心角的度数;

(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少?

 

查看答案

(2011广西崇左,20,9分)(本小题满分9分)今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.