(本小题满分10分)
如图14①至图14④中,两平行线AB、CD音的距离均为6,点M为AB上一定点.
思考:如图14①中,圆心为O的半圆形纸片在AB、CD之间(包括AB、CD),其直径MN在AB上,MN=8,点P为半圆上一点,设∠MOP=α,当α=________度时,点P到CD的距离最小,最小值为____________.
探究一在图14①的基础上,以点M为旋转中心,在AB、CD之间顺时针旋转该半圆形纸片,直到不能再转动为止.如图14②,得到最大旋转角∠BMO=_______度,此时点N到CD的距离是______________.
探究二将图14①中的扇形纸片NOP按下面对α的要求剪掉,使扇形纸片MOP绕点M在AB、CD之间顺时针旋转.
⑴如图14③,当α=60°时,求在旋转过程中,点P到CD的最小距离,并请指出旋转角∠BMO的最大值:
⑵如图14④,在扇形纸片MOP旋转过程中,要保证点P能落在直线CD上,请确定α的取值范围.
(参考数据:sin49°=,cos41°=,tan37°=)
(本小题满分9分)已知A、B两地的路程为240千米,某经销商每天都要用汽
车或火车将x吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车和
火车中的一种进行运输,且须提前预订.。现在有货运收费项目及收费标准表,行驶路程S
(千米)与行驶时间t(时)的函数图象(如图13中①),上周货运量折线统计图(如图13
中②)等信息如下:
(1)汽车的速度为__________千米/时,火车的速度为_________千米/时;
(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围)及x为何值时y汽>y火;(总费用=运输费+冷藏费+固定费用)
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前下周预定哪种运输工具,才能使每天的运输总费用较省?
(本小题满分9分)如图12,四边形ABCD是正方形,点E,K分别在BC,AB
上,点G在BA的延长线上,且CE=BK=AG.
⑴求证:①DE=DG;②DE⊥DG;
⑵尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
⑶连接⑵中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想;
⑷当时,请直接写出的值.
(本小题满分8分)甲、乙两人准备整理一批新到的实验器材,若甲单独整理需
要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.
⑴问乙单独整理多少分钟完工?
⑵若乙因式作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
(本小题满分8分)如图11,一转盘被等分成三个扇形,上面分别标有关-1,1,
2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,鞭个扇形恰好停在指针所
指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形).
⑴若小静转动转盘一次,求得到负数的概率;
⑵小宇和小静分别转动一次,若两人得到的数相同,则称两人“不谋而合”,用列表法(或画树形图)求两人“不谋而合”的概率.
(本小题满分8分)如图10,在6×8的网格图中,每个小正方形边长均为1,点
O和△ABC的顶点均为小正方形的顶点.
⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)