在平面直角坐标系中,点A(—4,—2)第 象限。
(12分)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点
A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速
度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后
第ts时,△EFG的面积为Scm2.
(1)当t=1s时,S的值是多少?
(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;
(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由。
(10分)如图,已知一次函数y=kx+b的图象交反比例函数的
图象于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且 ,求m的值和一次函数的解析式.
(8分)如图,AB是半圆的直径,点O是圆心,点C是OA的中点,CD⊥OA交
半圆于点D,点E是的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线.
(8分)徒骇河风景区建设是今年我市重点工程之一.某工程公司承担了一段河底
清淤任务,需清淤4万方,清淤1万方后,该公司为提高施工进度,又新增一批工程机械参
与施工,工效提高到原来的2倍,共用25天完成任务.问该工程公司新增工程机械后每天
清淤多少方?
(8分)被誉为东昌三宝之首的铁塔,始建于北宋时期,是我市现存的最古老的建
筑.铁塔由塔身和塔座两部分组成.为了测得铁塔的高度,小莹利用自制的测角仪,在C
点测得塔顶E的仰角为45º,在D点测得塔顶E的仰角为60º.已知测角仪AC的高为1.6m,
CD的长为6m,CD所在的水平线CG⊥EF于点G.求铁塔EF的高(精确到0.1m).