A. B. C. D.
正方形纸片折一次,沿折痕剪开,能剪得的图形是
A. 锐角三角形 B. 钝角三角形 C. 梯形 D. 菱形
下列各式中,正确的是
A. B.
C. D.
(11·大连)(本题12分)如图15,抛物线y=ax2+bx+c经过A (-1,0)、B (3,
0)、C (0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB.
(1)求该抛物线的解析式;
(2)抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;
若不存在,说明理由;
(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相
等,若存在,直接写出点R的坐标;若不存在,说明理由.
(11·大连)(本题12分)在△ABC中,∠A=90°,点D在线段BC上,∠EDB
=∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图13),
① ∠EBF=_______°;
② 探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图14),求的值(用含k的式子表示).
(11·大连)(本题11分)如图,在平面直角坐标系中,点A、B、C的坐标分别
为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点O、C不重合),过点P
的直线x=t与AC相交于点Q.设四边形ABPQ关于直线x=t的对称的图形与△QPC重叠
部分的面积为S.
(1)点B关于直线x=t的对称点B′的坐标为________;
(2)求S与t的函数关系式.