.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。
使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。
己知函数 (m为常数)。
(1)当=0时,求该函数的零点;
(2)证明:无论取何值,该函数总有两个零点;
(3)设函数的两个零点分别为和,且,此时函数图象与x轴的交点分
别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。
如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、 BE和一段水平平台DE构成。已知天桥高度BC≈4.8米,引桥水平跨度AC=8米。
(1)求水平平台DE的长度;
(2)若与地面垂直的平台立枉MN的高度为3米,求两段楼梯AD与BE的长度之比。
(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75
某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此旄工进度,能够比原来少用多少天完成任务?
如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°。
(1)求∠B的大小:
(2)已知圆心0到BD的距离为3,求AD的长。