下列式子中,结果为的是( ).
A. B. C. D.
书包里放有语文、数学、英语、生物、历史5本教科书,从中任意抽取2本,则抽取的2本中其中一本是数学教科书的情况有( )种.
A.2 B.3 C.4 D.5
的运算结果是( )
A. B. C. D.
下列计算正确的是( )
A. B.30+32=9 C. D.
安哥拉长毛兔最细的兔毛半径约为2.5×米,这个数用小数表示为( )
A.0.0000025米 B.0.0000205米 C.0.0000250米 D.0.00000025米
九(1)班数学课题学习小组,为了研究学习二次函数问题,他们经历了实践——应用——探究的过程
(1)实践:他们对一条公路上横截面为抛物线的单向双车道的隧道进行测量,测得隧道的路面宽为10米,隧道顶部最高处距地面6.25米,并画出了隧道截面图,建立了如图所示的直角坐标系,请你求出抛物线的解析式
(2)应用:按规定机动车辆通过隧道时,车顶部与隧道顶部在竖起方向上的高度差至少为0.5米,为了确保安全,问该隧道能否让最宽3米,最高3.5米的两辆车居中并列行驶(不考虑两车之间的空隙)?
(3)探究:该课题学习小组为进一步探究抛物线的有关知识,他们借助上述抛物线模型,提出了以下两个问题,请予解答:
①如图,在抛物线内作矩形ABCD,使顶点C、D落在抛物线上,顶点A、B落在x轴上,设矩形ABCD的周长为为l,求l的最大值
②如图,过原点作一条直线y=x,交抛物线于M,交抛物线的对称轴于N,P为直线OM上一动点,过点P作x轴的垂线交抛物线于点Q,问在直线OM上是否存在点P,使以点P、N、Q为顶点的三角形为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由