已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有 ( )
(A)最小值0; (B)最大值 1; (C)最大值2; (D)有最小值
对于抛物线,下列说法正确的是( )
(A)开口向下,顶点坐标 (B)开口向上,顶点坐标
(C)开口向下,顶点坐标 (D)开口向上,顶点坐标
抛物线的对称轴是( )
(A)直线 (B)直线 (C)直线 (D)直线
(本题满分12分)如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C
为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.
(1)当t≠1时,求证:△PEQ≌△NFM;
(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t之间的函数关系式,并求S的最小值.
(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数
y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、
B.
(1)判断P是否在线段AB上,并说明理由;
(2)求△AOB的面积;
(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO
半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.