满分5 > 初中数学试题 >

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=9...

如图所示,在平面直角坐标系中,四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(6ec8aac122bd4f6e),B(6ec8aac122bd4f6e),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线6ec8aac122bd4f6e经过点D、M、N.

(1)求抛物线的解析式.

(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由.

(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.

 

6ec8aac122bd4f6e

 

 

 

 

 

 

 

【解析】 (1)∵BC∥AD,B(-1,2),M是BC与x轴的交点,∴M(0,2), ∵DM∥ON,D(3,0),∴N(-3,2),则,解得,∴; (2)连接AC交y轴与G,∵M是BC的中点,∴AO=BM=MC,AB=BC=2,∴AG=GC,即G(0,1), ∵∠ABC=90°,∴BG⊥AC,即BG是AC的垂直平分线,要使PA=PC,即点P在AC的垂直平分线上,故P在直线BG上, ∴点P为直线BG与抛物线的交点, 设直线BG的解析式为,则,解得,∴, ∴,解得,, ∴点P()或P(), (3)∵,∴对称轴, 令,解得,,∴E(,0), 故E、D关于直线对称,∴QE=QD,∴|QE-QC|=|QD-QC|, 要使|QE-QC|最大,则延长DC与相交于点Q,即点Q为直线DC与直线的交点, 由于M为BC的中点,∴C(1,2),设直线CD的解析式为y=kx+b, 则,解得,∴, 当时,, 故当Q在()的位置时,|QE-QC|最大, 过点C作CF⊥x轴,垂足为F,则CD=. 【解析】略
复制答案
考点分析:
相关试题推荐

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.

6ec8aac122bd4f6e(1)求证:PB是⊙O的切线;

(2)求证:AQ•PQ=OQ•BQ;

(3)设∠AOQ=α,若cosα=6ec8aac122bd4f6e ,OQ=15,求AB的长.

 

 

 

 

查看答案

某园艺公司对一块直角三角形的花圃进行改造,测得两直角边长为6m、8m.现要将其扩建成等腰三角形,且扩充部分是以8m为直角边的直角三角形.求扩建后的等腰三角形花圃的周长.

 

 

查看答案

广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.

(1)求平均每次下调的百分率.

(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

 

 

查看答案

某校初三课外活动小组,在测量树高的一次活动中.如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m,在阳光下某一时刻测得l米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m,已知斜坡CD的坡比6ec8aac122bd4f6e,求树高AB.(结果保留整数,参考数据:6ec8aac122bd4f6e≈1.7).

6ec8aac122bd4f6e

 

 

查看答案

广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时.某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.

 6ec8aac122bd4f6e

(1)样本中最喜欢B项目的人数百分比是____,其所在扇形图中的圆心角的度数是____;

(2)请把统计图补充完整;

(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.