满分5 > 初中数学试题 >

如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒得速度...

如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒得速度从A点出发,沿AC向C移动,同时,动点Q以1米/秒得速度从C点出发,沿CB向B移动。当其中有一点到达终点时,他们都停止移动,设移动的时间为t秒。

(1)①当t=2.5秒时,求△CPQ的面积;

     ②求△CPQ的面积S(平方米)关于时间t(秒)的函数关系式;

(2)在P、Q移动的过程中,当△CPQ为等腰三角形时,写出t的值;

(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值。

6ec8aac122bd4f6e

 

【解析】 在Rt△ABC中,AB=6米,BC=8米,∴AC=10米 由题意得:AP=2t,CQ=10-2t (1)①过点P作PD⊥BC于D。 ∵t=2.5,AP=2×2.5=5,QC=2.5 ∴PD=AB=3,∴S=×QC×PD=3.75 ②过点Q作QE⊥PC于点E 易知Rt△QEC∽Rt△ABC,∴,QE= ∴S= (2)当秒(此时PC=QC),秒(此时PQ=QC),或秒(此时PQ=PC)△CPQ为等腰三角形; (3)过点P作PF⊥BC于点F,则有△PCF∽△ACB ∴,即 ∴PF=,FC= 则在Rt△PFQ中, 当⊙P与⊙Q外切时,有PQ=PA+QC=3t,此时 整理得:,解得 故⊙P与⊙Q外切时,; 当⊙P与⊙Q内切时,有PQ=PA-QC=t,此时 整理得:,解得 故⊙P与⊙Q内切时 【解析】略
复制答案
考点分析:
相关试题推荐

小王从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。

(1)小王从B地返回A地用了多少小时?

(2)求小王出发6小时后距A地多远?

(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?

6ec8aac122bd4f6e

 

查看答案

某校课外活动小组,在距离湖面7米高的观测台A处,看湖面上空一热气球P的仰角为37°,看P在湖中的倒影P’的俯角为53°,(P’为P关于湖面的对称点),请你计算出这个热气球P距湖面的高度PC约为多少米?

 

注:sin37°≈6ec8aac122bd4f6e,cos37°≈6ec8aac122bd4f6e,tan37°≈6ec8aac122bd4f6e;

 

Sin53°≈6ec8aac122bd4f6e,cos53°≈6ec8aac122bd4f6e,tan53°≈6ec8aac122bd4f6e

 

 

 

 

 

 

 

 

6ec8aac122bd4f6e

 

查看答案

在一个袋子中,有完全相同的4张卡片,把它们分别编号为l,2,3,4。

(1)从袋子中随机取两张卡片.求取出的卡片编号之和等于4的概率:

(2)先从袋子中随机取一张卡片,记该卡片的编号为a,然后将其放回,再从袋中随机取出一张卡片,级该卡片的编号为b,求满足6ec8aac122bd4f6e的概率。

 

查看答案

如图,在6ec8aac122bd4f6eABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G。

(1)求证:四边形DEBF是菱形;

(2)请判断四边形AGBD是什么特殊四边形?并加以证明。

6ec8aac122bd4f6e

 

查看答案

某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(太)与销售单价x(元)满足6ec8aac122bd4f6e,设销售这种台灯每天的利润为y(元)。

(1)求y与x之间的函数关系式;

(2)当销售单价定为多少元时.每天的利润最大?最大利润是多少?

(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润.应将销售单价定为多少元?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.