(2011•温州)计算:(﹣1)+2的结果是( )
A、﹣1 B、1
C、﹣3 D、3
如图,在△ABC中,∠B=90°,AB=6米,BC=8米,动点P以2米/秒得速度从A点出发,沿AC向C移动,同时,动点Q以1米/秒得速度从C点出发,沿CB向B移动。当其中有一点到达终点时,他们都停止移动,设移动的时间为t秒。
(1)①当t=2.5秒时,求△CPQ的面积;
②求△CPQ的面积S(平方米)关于时间t(秒)的函数关系式;
(2)在P、Q移动的过程中,当△CPQ为等腰三角形时,写出t的值;
(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值。
小王从A地前往B地,到达后立刻返回,他与A地的距离y(千米)和所用的时间x(小时)之间的函数关系如图所示。
(1)小王从B地返回A地用了多少小时?
(2)求小王出发6小时后距A地多远?
(3)在A、B之间友谊C地,小王从去时途经C地,到返回时路过C地,共用了2小时20分,求A、C两地相距多远?
某校课外活动小组,在距离湖面7米高的观测台A处,看湖面上空一热气球P的仰角为37°,看P在湖中的倒影P’的俯角为53°,(P’为P关于湖面的对称点),请你计算出这个热气球P距湖面的高度PC约为多少米?
注:sin37°≈,cos37°≈,tan37°≈;
Sin53°≈,cos53°≈,tan53°≈
在一个袋子中,有完全相同的4张卡片,把它们分别编号为l,2,3,4。
(1)从袋子中随机取两张卡片.求取出的卡片编号之和等于4的概率:
(2)先从袋子中随机取一张卡片,记该卡片的编号为a,然后将其放回,再从袋中随机取出一张卡片,级该卡片的编号为b,求满足的概率。
如图,在ABCD中,∠DAB=60°,AB=2AD,点E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G。
(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明。