满分5 > 初中数学试题 >

如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点...

如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,EBC上一点,以AE为边在直线MN的上方作正方形AEFG

1.连接GD,求证:△ADG≌△ABE;(2分)

2.连接FC,观察并猜测∠FCN的度数,并说明理由;(3分)

3.如图(2),将图(1)中正方形ABCD改为矩形ABCDAB=aBC=bab为常数),E是线段BC上一动点(不含端点BC),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点EBC运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请用含ab的代数式表示tanFCN的值;若∠FCN的大小发生改变,请举例说明.(4分)

6ec8aac122bd4f6e

 

6ec8aac122bd4f6e

 

1.∵四边形ABCD和四边形AEFG是正方形     ∴AB=AD,AE=AG,∠BAD=∠EAG=90º ∴∠BAE+∠EAD=∠DAG+∠EAD ∴∠BAE=∠DAG ∴△ BAE≌△DAG 2.∠FCN=45º          理由是:作FH⊥MN于H        ∵∠AEF=∠ABE=90º     ∴∠BAE +∠AEB=90º,∠FEH+∠AEB=90º     ∴∠FEH=∠BAE     又∵AE=EF,∠EHF=∠EBA=90º ∴△EFH≌△ABE                   ∴FH=BE,EH=AB=BC,∴CH=BE=FH ∵∠FHC=90º,∴∠FCH=45º 3.当点E由B向C运动时,∠FCN的大小总保持不变, 理由是:作FH⊥MN于H 由已知可得∠EAG=∠BAD=∠AEF=90º 结合(1)(2)得∠FEH=∠BAE=∠DAG 又∵G在射线CD上 ∠GDA=∠EHF=∠EBA=90º    ∴△EFH≌△GAD,△EFH∽△ABE        ∴EH=AD=BC=b,∴CH=BE, ∴== ∴在Rt△FEH中,tan∠FCN===   ∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=  【解析】略
复制答案
考点分析:
相关试题推荐

 如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(-2,0). 

1.求线段AD所在直线的函数表达式.

2.动点P从点A出发,以每秒2个单位长度的速度,按照A→D→C→B的顺序在菱形的边上匀速运动,设运动时间为t秒.求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切?

说明: 6ec8aac122bd4f6e

 

查看答案

在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),图中的折线分别表示S1、S2与t之间的函数关系.

中考资源网( www.zk5u.com),专注初中教育,服务一线教师。1.甲、乙两地之间的距离为     km,乙、丙两地之间的距离为      km;

2.求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?6ec8aac122bd4f6e

3.求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.

 

查看答案

如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A(0,1),B(-1,1),C(-1,3)。

1.画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;

2.画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;,

3.将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3 ,点C2的对应点

是C3(4,-1),在坐标系中画出△ A3B3C3,并写出点A3,B3的坐标。

 

 

查看答案

 2011年5月上旬,无锡市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成如图所示的扇形图和统计表:

6ec8aac122bd4f6e

说明: 6ec8aac122bd4f6e

请你根据以上图表提供的信息,解答下列问题:

1. m      n      x      y     

2.在扇形图中,C等级所对应的圆心角是        度;

3.如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?

 

查看答案

甲,乙两个盒子中装有质地、大小相同的小球.甲盒中有2个白球、l个黄球和l个蓝球;乙盘中有l个白球、2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球

为蓝球的概率的2倍.

  1. 求乙盒中蓝球的个数;

  2.从甲、乙两盒中分别任意摸取一球.求这两球均为蓝球的概率.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.