如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC。已知AB=5,DE=1,BD=8,设CD=x。则AC+CE的最小值是 。
1. 如图,已知点A为双曲线上的一点,AB⊥x轴,OA=4,且OA的垂直平分线交x轴于点C,连接AC,则△ABC的周长为 。
1. 已知正整数a满足不等式组 (为未知数)无解,则函数的图象与轴的交点坐标为 .
1. (本题满分10分)如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
1.(1)求证:EF是⊙O的切线;
2.(2)求DE的长.
1. (本小题满分10分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
1.(1)求梯形ABCD的面积;
2.(2)当P点离开D点几秒后,PQ//AB;
3.(3)当P、Q、C三点构成直角三角形时,求点P从点D运动的时间?
1. (本题满分9分) 某联欢会上有一个有奖游戏,规则如下:有5张纸牌,背面都是喜羊羊头像,正面有2张是笑脸,其余3张是哭脸.现将5张纸牌洗匀后背面朝上摆放到桌上,若翻到的纸牌中有笑脸就有奖,没有笑脸就不得奖,并罚唱一首歌.
1.(1)小芳获得一次翻牌机会,她从中随机翻开一张纸牌.小芳得奖的概率是 .
2.(2)小明获得两次翻牌机会,他同时翻开两张纸牌.小明认为这样得奖的概率是小芳的两倍,你赞同他的观点吗?请用树形图或列表法进行分析说明.