在实数,,,,,,中,无理数有 ( )
A、1个 B、2个 C、3个 D、4个
如图,在平面直角坐标系xoy中,矩型ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G
1.点C、D的坐标分别是C( ),D( )
2.求顶点在直线y=上且经过点C、D的抛物线的解析式
3.将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2
1.求A、B 两点的坐标及直线AC的函数表达式;
2.P是线段AC上的一个动点,过P点作y轴的平行线交
抛物线于E点,求线段PE长度的最大值;
3.点G是抛物线上的动点,在x轴上是否存在点F,
使A、C、F、G这样的四个点为顶点的四边形是
平行四边形?如果存在,直接写出所有满足条件的F
点坐标;如果不存在,请说明理由
(25分)在中,有多少个不同的整数(其中,[x]表示不大于x的最大整数)?
(25分)如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,联结AD与内切圆相交于另一点P,联结PC、PE、PF.已知PC⊥PF.求证:
(1)EP/DE=PD/DC;(2)△EPD是等腰三角形.
(20分)实数x、y、z、w满足x≥y≥z≥w≥0,且5x+4y+3z+6w=100.求x+y+z+w的最大值和最小值.