(本小题满分10分)
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明
(本小题8分)如图,在△ABC中,,点D在BC上,且DC=AC,
∠ACB的平分线CF交AD于点F,点E是AB的中点,连结EF.
求证:EF∥BC;
若△ABD的面积为6,求四边形BDFE的面积.
(本小题10分)
抛物线经过点O(0,0),A(4,0),B(2,2).
(1)求该抛物线的解析式;
(2)画出此抛物线的草图;
(3)求证:△AOB是等腰直角三角形;
(4)将△AOB绕点O按顺时针方向旋转135°得△,写出边的中点P的 坐标,试判定点P是否在此抛物线上,并说明理由.
(本小题8分)
关于x的一元二次方程有两个不相等的实数根.
(1)求k的取值范围.
(2)请选择一个k的负整数值,并求出方程的根
计算或化简:(本小题6分)
解下列方程(每题5分,共10分)
(1)
(2)(用配方法解)