如图,等边三角形ABC内接于⊙O,连接OB、OC,那么∠BOC的度数是
A.150° B.120° C.90° D.60°
已知两圆的半径分别为3cm和5cm,如果它们的圆心距是10cm,那么这两个圆的位置关系是
A.内切 B.相交 C.外切 D.外离
如图,在ΔABC中,D、E分别是AB、AC边上的中点,连接DE,那么ΔADE与ΔABC的面积之比是
A.1:16 B.1:9 C.1:4 D.1:2
下列各图中,是中心对称图形的是图
△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F .
(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;
(2)如图2,若连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论(不需证明);
(3)如图3,若将“AB=AC,点D是BC的中点”改为:“∠B=30°,AD⊥BC于点D”,其余条件不变,探索(1)中结论是否成立?若不成立,请探索关于AF、BE的比值.
已知:抛物线经过点.
(1)求的值;
(2)若,求这条抛物线的顶点坐标;
(3)若,过点作直线轴,交轴于点,交抛物线于另一点,且,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)