如图,在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:①AD=CB,②AE=CF,③∠B=∠D,④AD∥BC.请用其中三个作为已知条件,余下一个作为求证结论,编一道数学问题,并写出解答过程:
已知条件: , , ;
求证结论: .
证明:
已知△PQR在直角坐标系中的位置如图所示:
(1) 求出△PQR的面积;
(2) 画出△P′Q′R′,使△P′Q′R′与△PQR关于y轴对称,写出点P′、Q′、R′的坐标;
(3)连接PP′,QQ′,判断四边形QQ′P′P的形状,求出四边形QQ′P′P的面积.
如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.AD和EF有什么关系?请说明理由.
计算(1) (2)
需要在高速公路旁边修建一个飞机场,使飞机场到A,B两个城市的距离之和最小,请作出机场的位置.
如图,在△ABC中,AB=AC,∠A=30º,DE垂直平分AC于E,连结CD,求∠DCB的度数.