已知:如图7,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130 过D点的切线PD与直线AB交于点P,则∠ADP的度数为( )
A.45° B.40° C.50° D.65°
如图,正方形图案绕中心O旋转180°后,得到的图案是( )
一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子得到的数作为点的坐标,则点落在反比例函数图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是( )
A. B. C. D.
已知两圆的半径是方程两实数根,圆心距为8,那么这两个圆的位置关系是( )
A.内切 B.相交 C.外离 D.外切
下列计算正确的是 ( )
A. B. C. D.
(本题满分12分)我们设想用电脑模拟台球游戏,为简单起见,约定:①每个球袋视为一个点,如果不遇到障碍,各球均沿直线前进;②A球击B球,意味着B球在A球前进的路线上,且B球被撞击后沿A球原来的方向前进;③球撞击桌边后的反弹角度等于入射角度,(如图中∠β=∠a)如图所示,设桌边只剩下白球,A,6号球B。
(1)希望A球撞击桌边上C点后反弹,再击中B球,请给出一个算法,告知电脑怎样找到点C,并求出C点的坐标。
(2)设桌边RQ上有一球袋S(100,120),判定6号球B被从C点反弹出的白球撞击后能否直接落入球袋S中,(假定6号球被撞后速度足够大)。
(3)若用白球A直接击打6号球B,使6号球B撞击桌边OP上的D点后反弹,问6号球B从D点反弹后能否直接进入球袋Q中?(假定6号球被撞后速度足够大)