如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳固性、美观性、实用性等因素,需再加竹条与其顶点连接。要求:
(1)在图(1)、(2)中分别加适当根竹条,设计出两种不同的连接方案。
(2)通过上面的设计,可以看出至少需再加 根竹条,才能保证风筝骨架稳固、美观和实用。(3)在上面的方案设计过程中,你所应用的数学道理是
如图,这是某市部分简图,为了确定各建筑物的位置:
(1)请你以火车站为原点建立平面直角坐标系.
(2)写出市场、超市的坐标.
(3)将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,再画出平移后的△A/B/C/.
如图,已知,是△的角平分线,求证:.请在下面横线上填出推理的依据:
证明:∵ ,(已知)
∴ ∥.(同位角相等、两直线平行)
∴ .( )
∵ 是△的角平分线,( )
∴ . ( )
∴ . ( )
∵ ,(三角形的一个外角等于与它不相邻的两个内角和)
∴ . ( 等量代换 )
如图,若AB∥CD,EF与AB 、CD分别相交于E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,求∠EFP的度数.
如图,一艘轮船在A处看见巡逻艇M在其北偏东62°的方向上,此时一艘客船在B处看见巡逻艇M在其北偏东13°的方向上,试求此时从巡逻艇上看这两艘船的视角∠AMB的度数。
如图2,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,求∠2的度数。