满分5 > 初中数学试题 >

(本题满分12分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形...

(本题满分12分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限。

(1)当∠BAO=45°时,求点P的坐标;

(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;

6ec8aac122bd4f6e(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.【解析】 (1)当∠BAO=45°时,四边形OAPB为正方形 OA=OB=a·cos45°=a ∴P点坐标为(a,a) (2)作DE⊥x轴于E,PF ⊥x轴于F, 设A点坐标为(m,0),B点坐标为(0,n) ∵∠BAO+∠DAE=∠BAO+∠ABO=90° ∴∠DAE=∠ABO 在△AOB和△DEA中: ∴△AOB≌和△DEA(AAS) ∴AE=0B=n,DE=OA=m, 则D点坐标为(m+n,m) ∵点P为BD的中点,且B点坐标为(0,n) ∴P点坐标为(,)∴PF=OF= ∴∠POF=45°, ∴OP平分∠AOB。即无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上; (3)当A,B分别在x轴正半轴和y轴负半轴上运动时,设PF与PA的夹角为α, 则0°≤α<45° h=PF=PA·cosα=a·cosα ∵0°≤α<45°∴<cosα≤1     ∴a<h≤a 【解析】略
复制答案
考点分析:
相关试题推荐

(本题满分12分)已知二次函数6ec8aac122bd4f6e的图象经过点P(-2,5)

(1)求b的值并写出当1<x≤3时y的取值范围;

(2)设6ec8aac122bd4f6e在这个二次函数的图象上,

①当m=4时,6ec8aac122bd4f6e能否作为同一个三角形三边的长?请说明理由;

②当m取不小于5的任意实数时,6ec8aac122bd4f6e一定能作为同一个三角形三边的长,请说明理由。

 

 

 

查看答案

(本题满分10分)如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。

(1)点N是线段BC的中点吗?为什么?

(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。

6ec8aac122bd4f6e

 

 

查看答案

(本题满分10分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为sm,图中折线OABD、线段EF分别表示s1、s2t之间的函数关系的图象。

(1)求s2t之间的函数关系式;

(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?

 

6ec8aac122bd4f6e 

 

 

 

 

 

 

 

 

 

 

查看答案

(本题满分10分)如图,四边形ABCD是矩形,直线l垂直平分线段AC,垂足为O,直线l分别与线段AD、CB的延长线交于点E、F。

(1)△ABC与△FOA相似吗?为什么?

(2)试判定四边形AFCE的形状,并说明理由。

6ec8aac122bd4f6e

 

查看答案

(本题满分10分)一幢房屋的侧面外墙壁的形状如图所示,它由等腰三角形OCD和矩形ABCD组成,∠OCD=25°,外墙壁上用涂料涂成颜色相同的条纹,其中一块的形状是四边形EFGH,测得FG∥EH,GH=2.6m,∠FGB=65°。

(1)求证:GF⊥OC;

(2)求EF的长(结果精确到0.1m)。

(参考数据:sin25°=cos65°≈0.42,cos25°=sin65°≈0.91)

 

 

 

 

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.