明代长城究竟有多长?2009年4月18日,国家文物局和国家测绘局联合发布数据,明长城的长度为8 851.8千米,比十年前最近一次调查又增加了2 200多千米.8 851.8千米用科学记数法可以表示为(结果保留3个有效数字) ( )
A.8.85×103米 B.8.85×106米
C.8.852×103米 D.8.852×106米
-5的绝对值是 ( )
A.5 B.-5 C. D.-
(本题9分)如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=.
1. (1)写出顶点A、B、C的坐标;
2.(2)如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.
①求出y与x之间的函数关系式,并写出自变量x的取值范围;
②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.
(本题9分)某水产品市场管理部门规划建造面积为2400 m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28 m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
1.(1)试确定A种类型店面的数量;
2.(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?
(本题9分)如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
1.(1)求抛物线的解析式;
2.(2)求点D的坐标,并在图中画出直线BD;
3.(3)求出直线BD的一次函数解析式,并根据图象回答:当x满足什么条件时,上述二次函数的值大于该一次函数的值.
【题文】(本题8分)如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连结AD、BD、CD和BC.
1.(1)求证:∠CBN=∠CDB;
2.(2)若DC是∠ADB的平分线,且∠DAB=15°,求DC的长.