(11·珠海)(本题满分7分)如图,将一个钝角△ABC(其中∠ABC=120°)绕
点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连结AA1.
(1)写出旋转角的度数;
(2)求证:∠A1AC=∠C1.
(11·珠海)(本题满分7分)如图,Rt△OAB中,∠OAB=90°,O为坐标原点,
边OA在x轴上,OA=AB=1个单位长度.把Rt△OAB沿x轴正方向平移1个单位长度后
得△AA1B.
(1)求以A为顶点,且经过点B1的抛物线的解析式;
(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.
(11·珠海)(本题满分7分)某校为庆祝国庆节举办游园活动,小军来到摸球
兑奖活动场地,李老师对小军说:“这里有A、B两个盒子,里面都装有一些乒乓球,你只
能选择在其中一只盒子中摸球.”获将规则如下:在A盒中有白色乒乓球4个,红色乒乓球
2个,一人只能摸一次且一次摸出一个球,若为红球则可获得玩具熊一个,否则不得奖;在
B盒中有白色乒乓球2个,红色乒乓球2个,一人只能摸一次且一次摸出两个球,若两球均
为红球则可获得玩具熊一个,否则不得奖.请问小军在哪只盒子内摸球获得玩具熊的机会更
大?说明你的理由.
(11·珠海)(本题满分7分)如图,在鱼塘两侧有两棵树A、B,小华要测量此
两树之间的距离.他在距A树30 m的C处测得∠ACB=30°,又在B处测得∠ABC=120°.求
A、B两树之间的距离(结果精确到0.1m)(参考数据:
(11·珠海)(本题满分6分)如图,在正方形ABC1D1中,AB=1.连接AC1,
以AC1为边作第二个正方形AC1C2D2;连接AC2,以AC2为边作第三个正方形AC2C3D3.
(1)求第二个正方形AC1C2D2和第三个正方形的边长AC2C3D3;
(2)请直接写出按此规律所作的第7个正方形的边长.
(11·珠海)(本题满分6分)八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,过了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.