如果两个正数,即,有下面的不等式:
当且仅当时取到等号
我们把叫做正数的算术平均数,把叫做正数的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知,求函数的最小值。
【解析】
令,则有,得,当且仅当时,即时,函数有最小值,最小值为。
根据上面回答下列问题
1.已知,则当 时,函数取到最小值,最小值
为
2.用篱笆围一个面积为的矩形花园,问这个矩形的长、宽各为多少时,所
用的篱笆最短,最短的篱笆周长是多少
3.已知,则自变量取何值时,函数取到最大值,最大值为多少?
我们知道:直角三角形斜边上的中线等于斜边的一半,说明斜边上的中线可把直角三角形分成两个等腰三角形(图①)。又比如,顶角为36°的等腰三角形也能分成两个等腰三角形(图②)。
1.试试看,你能把图③、图④、图⑤中的三角形分成两个等腰三角形吗
2.△ABC中,有一内角为36°,过某一顶点的直线将△ABC分成两个等腰三角形,则满足上述条件的不同形状(相似的认为是同一形状)的△ABC最多有5种,除了图②、图③中的两种,还有三种,请你画出来
某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元
1.求甲、乙两种花木每株成本分别为多少元
2.根据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元,该花农决定在成本不超过30000元的前提下培育甲乙两种苗木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
定义:如果一个数的平方等于-1,记为=-1,这个数i叫做虚数单位。那么和我们所学的实数对应起来就叫做复数,表示为(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似。
例如计算:
1.填空:=_________, =____________
2.计算:
3.试一试:请利用以前学习的有关知识将化简成的形式.
10年中考模拟卷改编
某海滨浴场的海岸线可以看作直线l(如图),有两位救生员在岸边的点A同时接到了海中的点B(该点视为定点)的呼救信号后,立即从不同的路径前往救助。其中1号救生员从点A先跑300米到离点B最近的点D,再跳入海中沿直线游到点B救助;2号救生员先从点A跑到点C,再跳入海中沿直线游到点B救助。如果两位救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,且∠BAD=450,∠BCD=600,请问1号救生员与2号救生员谁先到达点B?
“不在同一直线上的三点确定一个圆”。请你判断平面直角坐标系内的三个点,, 是否可以确定一个圆。请写出你的推理过程。