已知抛物线与x轴的一个交点为A(-1,0),与y轴正半轴交于点C.
1.直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;
2.当∠ACB=90°时,求抛物线的解析式;
3.抛物线上是否存在点M,使得△ABM和△ABC的面积相等(△ABM与△ABC重合除外)?若存在,请直接写出点M坐标;若不存在,请说明理由.
4.在第一象限内,抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出这个最大值和点N坐标;若不存在,请说明理由.
如图1,Rt△ABC中,∠ACB=90°,AC=3,BC=4,点O是斜边AB上一动点,以OA为半径作⊙O与AC边交于点P,
1.当OA=时,求点O到BC的距离
2.如图2,当OA=时,求证:直线BC与⊙O相切;此时线段AP的长是多少?
3.若BC边与⊙O有公共点,直接写出 OA
的取值范围;
4.若CO平分∠ACB,则线段AP的长是多少?
1.如图1,正方形ABCD的边长为1,点E是AD边的中点,将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G,则FG=DG,求出此时DG的值;
2.如图2,矩形ABCD中,AD>AB,AB=1,点E是AD边的中点,同样将△ABE沿BE翻折得到△FBE,延长BF交CD边于点G.
①证明:FG=DG;
②若点G恰是CD边的中点,求AD的值;
③若△ABE与△BCG相似,求AD的值.
如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例
我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).
思考发现
小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.
1.图2中,矩形ABEF的面积是 ;(用含a,b,c的式子表示)
2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.
3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
保护生态环境,建设环境友好型社会已经从理念变为人们的行动.我市某企业由于排污超标,于2010年2月起适当限产,并投入资金进行治污改造,5月底治污改造工程顺利完工.已知该企业2010年1 月的利润为200万元,设第x个月的利润为y万元(2010年1 月为第1个月).当1≤x≤5时,y与x成反比例;当x>5时,该企业每月的利润比前一个月增加20万元.
1.分别求1≤x≤5和x>5时,y与x之间的函数关系式.
2.治污改造工程完工后经过几个月,该企业月利润才能达到2010年1月的水平?
3.当月利润少于100万元时为该企业资金紧张期,问该企业资金紧张期共有几个月?
如图.电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可使小灯泡发光.
1.任意闭合其中一个开关,则小灯泡发光的概率等于___
2.任意闭合其中两个开关,请用画树状图或列表的方法求出小
灯泡发光的概率.