如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G,且∠AGO=30°。
(1)点C、D的坐标分别是C( ),D( );
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。
某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:,且物价部门规定这种绿茶的销售单价不得高于90元/千克.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?
如图,直线与反比例函数的图象交于A,B两点.(1)求、的值?
(2)直接写出时x的取值范围?
(3)如图,等腰梯形OBCD中,BC//OD,
OB=CD,OD边在x轴上,过点C作CE
⊥OD于点E,CE和反比例函数的图象
交于点P,当梯形OBCD的面积为12时,
请判断PC和PE的大小关系,并说明
理由.
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分
别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字,
和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B
布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐
标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=-X-2上的概率
如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.
(1)请写出抛物线的开口方向、顶点坐标、对称轴.
(2)请求出球飞行的最大水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式
如图,已知直线经过点P(,),点P关
于轴的对称点P′在反比例函数()的图象上.
(1)求的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式.