(本小题满分9分,其中(1)小题4分,(2)小题5分)
某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
|
甲 |
乙 |
进价(元/件) |
15 |
35 |
售价(元/件) |
20 |
45 |
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?
(本小题满分9分,其中(1)小题5分,(2)小题4分)
如图4:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组
的最大整数解.
(1)求a、b、c的长.
(2)若AE平分△ABC的周长,求∠BEA的大小.
(本小题满分8分)列方程解应用题:
现加工一批机器零件,甲单独完成需4天,乙单独完成需6天。现由乙先做1天,然后两人合做,完成后共得报酬600元。若按个人完成的工作量给付报酬,你应如何分配呢?
(本小题满分8分。其中(1)小题4分,(2)小题4分)
如图3:在正方形网格上有一个△ABC.
(1)作出△ABC关于直线MN的对称图形;
(2)若网格上最小正方形的边长为1,求△ABC的面积.
(本小题满分8分。其中(1)小题6分,(2)小题2分)
如图2:在等边三角形△ABC中,BD平分∠ABC,延长BC到E,使CE=CD,连接D、E.
(1)小明同学说:“BD=DE”,他说得对吗?请你说明理由;
(2)小强同学说把“BD平分∠ABC”改成其它条件,也能得到同样的结论,你认为该如何改呢?
(本小题满分8分)小敏和小兰都想当节目主持人,但现在名额只有1个,为了能够选出1人参加 ,小丽想了一个办法:在三张卡片上分别写着3、-4、4,放入盒子里搅匀,随机抽取2张,若两张卡片上的数字之和为0,小敏当主持人,否则小兰当主持人,你认为这个游戏公平吗?用数据说明你的观点.