方程 x(x+2)=(x+2)的解是 ( )
A.x=1 B.x1=0 x2=-2 C.x1=1 x2=-2 D.x1=1 x2=2
如图:下列四个图案中既是轴对称图形,又是中心对称图形的是( )
A B C D
二次根式有意义时,x的取值范围是 ( )
A.x≤ B.x< C.x> D.x≥
(满分13分)如图12.1,已知抛物线经过坐标原点O和x轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且BC=1,AD=2,AB=3.
(1)求m的值及该抛物线的函数关系式;
(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).
① 当t为何值时,△PNC是以PN为底边的等腰三角形 ;
② 设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
(满分11分)如图11,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于F,连结CF.
(1)求证:AF=CD;
(2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;
(3)在(2)的条件下,求sin∠ABF的值.
(满分8分)在如图10所示的正方形网格中,△ABC的顶点均在格点上,在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1,并写出点B1的坐标;
(2)把△ABC绕点C按顺时针方向旋转90°后得到△A2B2C,画出△A2B2C,并写出点B2的坐标;
(3)把△ABC以点A为位似中心放大,使放大前后对应边长的比为1:2,画出放大后的△AB3C3.