在数轴上表示不等式组的解集,正确的是
A. B. C. D.
函数中,自变量x的取值范围是
A.x≥﹣1 B.x≥1 C.x≤﹣1 D.x≤1
-2的绝对值是
A.2 B. C. D.-
(本小题满分12分)
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。
1.(1)点C、D的坐标分别是C( ),D( );
2.(2)求顶点在直线y=上且经过点C、D的抛物
线的解析式;
3.(3)将(2)中的抛物线沿直线y=平移,平移后
的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。
平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?
若存在,请求出此时抛物线的解析式;若不存在,请说
明理由。
(本小题满分10分)
某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:
方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;
方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p = ;
试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!
(本小题满分10分)
如图1,点P、Q分别是边长为4cm的等边∆ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
1.(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
2.(2)何时∆PBQ是直角三角形?
3. (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;