如图有两个转盘,每个转盘都分为3个相同大小的扇形区域,分别用序号1,2,3标出。现转动两个转盘,等转盘停止转动时,指针指向每个区域的可能性相等(不计指针与两个区域交线重合的情形),将所得区域的序号相乘,比较所得积为奇数和偶数的概率的大小。有人说:因为两个转盘中奇数序号比偶数序号多,显然所得积为奇数的概率大,你同意他的说法吗?请说明理由。
有一木质圆形脸谱工艺品,H、T两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D处打一小孔,现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定D点的位置,并分别说明理由(图中点O为圆心)
解方程:
(1)
(2)(x-3)(x+1)=2(x-3)
计算:
(1)
(2)
二次函数的图象如图所示,点位于坐标原点, 点,,,…, 在y轴的正半轴上,点,,,…, 在二次函数位于第一象限的图象上,若△,△,△,…,都为等边三角形,则的边长= .
若点,以,为圆心,以2为半径的圆内,则的取值范围为