(1)请你任意写出3个正的真分数:____,___,___,给每个分数的分子、分母同加一个相同正数得到三个新分数:____,____,____,
(2)比较原来每个分数与对应新分数的大小,可以得出下面的结论:
一个真分数是(,均为正数),给其分子分母同加一个正数,得,则两个分数的大小关系是________.
(3)请你用文字叙述(2)中结论的含义:______________________ ___________________
(4)请你用图形的面积或其他方法说明这个结论的正确性。
(5)解决问题:如图所示,有一个长宽不等的长方形绿地,现给绿地四周铺一条宽相等的小路,问原来的长方形绿地与现在铺过小路后的长方形绿地是否相似?为什么?
(6)这个结论可以解释生活中的许多现象,解决许多生活与数学中的问题,请你再提出一个类似的数学问题,或举出一个生活中与此结论相关的例子.
2010年5月1日上海世博会召开了,上海世博会对我国在政治、经济、文化等方面的影响很大.某校现有学生2000名,学校就同学们对上海世博会的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计。了解程度以同一标准划分成“不了解”、“了解很少”、“基本了解”和“了解”四个等级,绘制了下面尚不完整的统计图,根据统计图中所提供的信息解答下列问题:
(1)该校参加问卷调查的学生有________名;
(2)补全两个统计图;
(3)该校有多少名学生达到基本了解以上(含基本了解)的程度?
(4)为了让更多的学生更好地了解世博会,学校举办了两期专刊.之后又进行了一次调查,结果全校已有1352名学生达到了基本了解以上(含基本了解)的程度.如果每期专刊发表之后学生达到基本了解以上(含基本了解)的程度增长的百分数相同,试求这个百分数.
如图有两个转盘,每个转盘都分为3个相同大小的扇形区域,分别用序号1,2,3标出。现转动两个转盘,等转盘停止转动时,指针指向每个区域的可能性相等(不计指针与两个区域交线重合的情形),将所得区域的序号相乘,比较所得积为奇数和偶数的概率的大小。有人说:因为两个转盘中奇数序号比偶数序号多,显然所得积为奇数的概率大,你同意他的说法吗?请说明理由。
有一木质圆形脸谱工艺品,H、T两点为脸谱的耳朵,打算在工艺品反面两耳连线中点D处打一小孔,现在只有一块无刻度单位的直角三角板(斜边大于工艺品的直径),请你用两种不同的方法确定D点的位置,并分别说明理由(图中点O为圆心)
解方程:
(1)
(2)(x-3)(x+1)=2(x-3)
计算:
(1)
(2)