若点C在线段AB上,则下列条件中不能确定点C是线段AB中点的是 ( )
A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB
下列关于单项式的说法中,正确的是 ( )
A.系数是-,次数是4 B.系数是-,次数是3
C.系数是-3,次数是4 D.系数是-2π,次数是3
如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是 ( )
如图,在平面直角坐标系xOy中, 正方形OABC的边长为2cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=a+bx+c经过点A、B,最低点为M,且=
(1)求此抛物线的解析式.,并说明这条抛物线是由抛物线y=a 怎样平移得到的。
(2)如果点P由点A开始沿着射线AB以2cm/s的速度移动, 同时点Q由点B开始沿BC边以1cm/s的速度向点C移动,当其中一点到达终点时运动结束.
①在运动过程中,P、Q两点间的距离是否存在最小值,如果存在,请求出它的最小值。
②当PQ取得最小值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是梯形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.
如图(1),在地面A、B两处测得地面上标杆PQ的仰角分别为30°、45°, 且测得AB=3米,求标杆PQ的长
(2)在数学学习中要注意基本模型的应用,如图(2),是测量不可达物体高度的基本模型:在地面A、B两处测得地面上标杆PQ的仰角分别为,且测得AB=a米。
设PQ=h米,由PA-PB=a可得关于h的方程 ,解得h=
(3)请用上述基本模型解决下列问题:如图3,斜坡AP的倾斜角为15°,在A处测得Q的仰角为45°,要测量斜坡上标杆PQ的高度,沿着斜坡向上走10米到达B,在B处测得Q的仰角为60°,求标杆PQ的高。(结果可含三角函数)
(1)如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形.求点C的坐标.
(2)在(1)的条件下,试在直角坐标系内确定点N,使△NOA与△AOC相似,求出所有符合条件的点N的坐标.