如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-4,0),点N的坐标为(-3,-2),直角梯形OMNH关于原点O的中心对称图形是直角梯形OABC,(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);
1.求出过A,B,C三点的抛物线的表达式
2.在直角梯形OABC中,截取BE=AF=OG=m(m>0),且E,F,G分别在线段BA,AO,OC上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
3.在(2)的情况下,是否存在BG∥EF的情况,若存在,请求出相应m的值,若不存在,说明理由.
如图,直线与x轴、y轴分别相交于点B、点C,抛物线 经过B、C两点,与x轴的另一个交点为A,顶点为P,且抛物线的对称轴为.
1.求抛物线的函数表达式及顶点坐标;
2.连接AC,则在x轴上是否存在一点Q,使得以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出所有点Q的坐标;若不存在,请说明理由.
如图,在Rt△ABO中,OB=8,tan∠OBA=.若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点C在轴负半轴上,且OB=4OC.若抛物线经过点A、B、C .
1.求该抛物线的解析式
2.设该二次函数的图象的顶点为P,求四边形OAPB的面积
3.有两动点M,N同时从点O出发,其中点M以每秒2个单位长度的速度沿折线OAB按O→A→B的路线运动,点N以每秒4个单位长度的速度沿折线按O→B→A的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S .
①请求出S关于t的函数关系式,并写出自变量t的取值范围;
②判断在①的过程中,t为何值时,△OMN 的面积最大?
如图,在平面直角坐标系中,已知直线交轴于点A,交轴于点B,抛物线经过点A和点(2,3),与轴的另一交点为C.
1.求此二次函数的表达式
2.若点P是轴下方的抛物线上一点,且△ACP的面积为10,求P点坐标;
3.若点D为抛物线上AB段上的一动点(点D不与A,B重合),过点D作DE⊥轴交轴于F,交线段AB于点E.是否存在点D,使得四边形BDEO为平行四边形?若存在,请求出满足条件的点D的坐标;若不存在,请通过计算说明理由.
如图(a)过反比例函数的图象在第一象限内的任意两点A、B作x轴的垂线,垂足分别为C、D,连接AO、BO和AB,AC和OB的交点为E,设△AOB与梯形ACDB的面积分别为S与S,
1.试比较S与S的大小;
2.如图(b),已知直线与双曲线交于M、N点,且点M的纵坐标为2.
①求m的值;
②若过原点的另一条直线l交双曲线于P、Q两点(P点在第一象限),若由M、N、P、Q为顶点组成的四边形面积为64,求P点的坐标。
已知二次函数的图象过点A(-3,0)和点B(1,0),且与轴交于点C,D点在抛物线上且横坐标是 -2。
1.求抛物线的解析式;
2.抛物线的对称轴上有一动点P,求出PA+PD的最小值
3.点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E、G点坐标;如果不存在,请说明理由。