我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )
城市 |
北京 |
上海 |
重庆 |
杭州 |
苏州 |
广州 |
武汉 |
最高温度 (℃) |
26 |
25 |
31 |
29 |
29 |
31 |
31 |
A.29,28 B.31,29 C.26,30 D.25,31
五边形的内角和是( )
A.180° B.360° C.540° D.720°
在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( )
A. B. C. D.
.的相反数是( )
A.5 B. C. D.
已知半径为R的⊙经过半径为r的⊙O的圆心,⊙O与⊙交于E、F两点.
(1)如图(1),连结00'交⊙O于点C,并延长交⊙于点D,过点C作⊙O的切线交⊙于A、B两点,求OA·OB的值;
(2)若点C为⊙O上一动点,①当点C运动到⊙时,如图(2),过点C作⊙O的切线交⊙,于A、B两点,则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.
②当点C运动到⊙外时,过点C作⊙O的切线,若能交⊙于A、B两点,如图(3),则OA·OB的值与(1)中的结论相比较有无变化?请说明理由.
、阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
①分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
②归纳:考察点的个数和可连成直线的条数发现:如下表
点的个数 |
可作出直线条数 |
2 |
1= |
3 |
3= |
4 |
6= |
5 |
10= |
…… |
…… |
n |
③推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即
④结论:
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出 个三角形;
当仅有4个点时,可作出 个三角形;
当仅有5个点时,可作出 个三角形;
……
(2)归纳:考察点的个数n和可作出的三角形的个数,发现:(填下表)
点的个数 |
可连成三角形个数 |
3 |
|
4 |
|
5 |
|
…… |
|
n |
|
(3)推理:
(4)结论: