(本题12分)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
1.(1)求证:△EGB是等腰三角形
2.(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小 度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。
(本题10分)如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,交AD,BC于E,F,延长BA交⊙A于G,
(本题10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元。商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?
(本题8分) 已知一元二次方程有两个不相等的实数根.
[1.(1)求的取值范围;
2.(2)如果是符合条件的最大整数,且一元二次方程与有一个相同的根,求此时的值.
(本题8分)如图,在直角坐标系中,的两条直角边分别在轴的负半轴,轴的负半轴上,且.将绕点按顺时针方向旋转,再把所得的像沿轴正方向平移1个单位,得.
1.(1)写出点的坐标;
2.(2)求点和点之间的距离.
(本题共4小题,每小题6分,共24分)
解方程:1.(1);
2.(2)(配方法)
3.(3)
4. (4)