已知(a-2)x-by|a|-1=5是关于x、y 的二元一次方程,则a=______,b=_____.
【解析】要满足“二元”“一次”两个条件,必须a-2≠0,且b ≠0,及| a|-1=1.
(本题12分)如图,已知抛物线y=x2+3与x轴交于点A、B,与直线y=x+b相交于点B、C,直线y=x+b与y轴交于点E.
(1)写出直线BC的解析式;
(2)求△ABC的面积;
(3)若点M在线段AB上以每秒1个单位长度的速度从A向B运动(不与A、B重合),同时,点N在射线BC上以每秒2个单位长度的速度从B向C运动。设运动时间为t秒,请写出△MNB的面积s与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?
(本题满分12分) 如图所示,是圆O的一条弦,,垂足为,交圆O于点,点在圆O上.(1)若,求的度数;
(2)若,,求的长.
(本题10分)如图,已知E是平行四边形ABCD的BC边延长线上一点,AE交CD于F,CE=BC。
(1)求证:△ECF∽△ADF;
(2)S△ADF : S△CEF的值。
(本题10分)如图,在中,,,,动点从点开始沿边向以的速度移动(不与点重合),动点从点开始沿边向以的速度移动(不与点重合).如果、分别从、同时出发,那么
(1)经过多少秒,四边形的面积最小;(2)面积最小是多少?
(第25题图)
(本题10分)如图,已知A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.
(1)试判断直线AB与⊙O的位置关系,并说明理由;
(2)若∠ACD=45°,OC=2,求弦AD的长。