某工厂设计了一款产品,成本为每件20元.投放市场进行试销,得到如下数据:
售价(元∕件) |
…… |
30 |
40 |
50 |
60 |
…… |
日销售量(件) |
…… |
500 |
400 |
300 |
200 |
…… |
1.(1)若日销售量(件)是售价(元∕件)的一次函数,求这个一次函数的解析式;
2.(2)设这个工厂试销该产品每天获得的利润为W(元),当售价定为每件多少元时,工厂每天获得的利润最大?最大利润是多少元?
如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,以AB上一点O为圆心,AD为弦作⊙O.
1.(1)求证:BC为⊙O的切线;
2. (2)若AC= 6,tanB=,求⊙O的半径.
如图,天空中有一个静止的热气球A,从地面点B测得A的仰角为30°,从地面点C测得A的仰角为60°.已知BC=50m,点A和直线BC在同一垂直平面上,求热气球离地面的高度.
.已知:在平面直角坐标系xOy中,将直线绕点O顺时针旋转90°得到直线l,反比例函数的图象与直线l的一个交点为A(a,2),试确定反比例函数的解析式.
如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,联结BD,过点C作CE⊥BD于交AB于点E,垂足为点H,若AD=2,AB=4,求sin∠BCE.
已知二次函数.
1.(1)求出这个函数图象的对称轴和顶点坐标;
2.(2)求出这个函数图象与轴、y轴的交点坐标.