某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.
1.求y与x之间的函数关系式;
2.由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.
如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.
1.求证:△BDF≌△CDE;
2.若AB=AC,求证:四边形BFCE是菱形.
如图,在一个坡角为20º的斜坡上方有一棵树,高为AB,当太阳光线与水平线成52º角时,测得该树在斜坡上的树影BC的长为10m,求树高AB(精确到0.1m).
(已知:sin20º≈0.342,cos20º≈0.940,tan20º≈0.364,sin52º≈0.788,cos52º≈0.616,tan52º≈1.280)
儿童节期间,某公园游戏场举行一场活动,有一种游戏的规则是:在一个装有8个红球和若干个白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个世博会吉祥物海宝玩具.已知参加这种游戏的儿童有40000人次,公园游戏场发放海宝玩具8000个.
1.求参加此次活动得到海宝玩具的概率?
2.请你估计袋中白球的数量接近多少?
分别按下列要求解答:
1.在图1中,将△ABC先向左平移5个单位,再作关于直线AB的轴对称图形,经两次变换后得到△A1B1 C1,画出△A1B1C1;
2.在图2中,△ABC经变换得到△A2B2C2.描述变换过程.
解不等式组:并在数轴上把解集表示出来.